Zero-shot cross-lingual named entity recognition (NER) aims at transferring knowledge from annotated and rich-resource data in source languages to unlabeled and lean-resource data in target languages. Existing mainstream methods based on the teacher-student distillation framework ignore the rich and complementary information lying in the intermediate layers of pre-trained language models, and domain-invariant information is easily lost during transfer. In this study, a mixture of short-channel distillers (MSD) method is proposed to fully interact the rich hierarchical information in the teacher model and to transfer knowledge to the student model sufficiently and efficiently. Concretely, a multi-channel distillation framework is designed for sufficient information transfer by aggregating multiple distillers as a mixture. Besides, an unsupervised method adopting parallel domain adaptation is proposed to shorten the channels between the teacher and student models to preserve domain-invariant features. Experiments on four datasets across nine languages demonstrate that the proposed method achieves new state-of-the-art performance on zero-shot cross-lingual NER and shows great generalization and compatibility across languages and fields.
translated by 谷歌翻译
激活函数是元素的数学函数,在深神经网络(DNN)中起着至关重要的作用。已经提出了许多新颖和复杂的激活功能来提高DNN的准确性,但在训练过程中还可以通过反向传播消耗大量记忆。在这项研究中,我们提出了嵌套的正向自动分化(正向AD),专门针对用于记忆效率的DNN训练的元素激活函数。我们在两个广泛使用的深度学习框架(Tensorflow和Pytorch)中部署了嵌套的AD,分别支持静态和动态计算图。我们的评估表明,在相同的记忆降低率下,嵌套的前AD嵌套将记忆足迹降低到1.97倍,比基线模型降低了20%。
translated by 谷歌翻译
现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
训练后量化(PTQ)由于其在部署量化的神经网络方面的便利性而引起了越来越多的关注。 Founding是量化误差的主要来源,仅针对模型权重进行了优化,而激活仍然使用圆形至最终操作。在这项工作中,我们首次证明了精心选择的激活圆形方案可以提高最终准确性。为了应对激活舍入方案动态性的挑战,我们通过简单的功能适应圆形边框,以在推理阶段生成圆形方案。边界函数涵盖了重量误差,激活错误和传播误差的影响,以消除元素误差的偏差,从而进一步受益于模型的准确性。我们还使边境意识到全局错误,以更好地拟合不同的到达激活。最后,我们建议使用Aquant框架来学习边界功能。广泛的实验表明,与最先进的作品相比,Aquant可以通过可忽略不计的开销来取得明显的改进,并将Resnet-18的精度提高到2位重量和激活后训练后量化下的精度最高60.3 \%。
translated by 谷歌翻译
将信息存储在DNA分子中引起了极大的兴趣,因为它在寿命,高存储密度和低维护成本方面具有优势。DNA储存管道中的关键步骤是根据其相似性有效地聚集了检索到的DNA序列。Levenshtein距离是两个DNA序列之间相似性的最合适的度量,但在计算复杂性方面较低,与成熟的聚类算法兼容。在这项工作中,我们建议使用暹罗神经网络,平方欧几里得嵌入和卡方回归,提出了一种新型的深方形欧几里德嵌入DNA序列。Levenshtein的距离通过嵌入向量之间的平方欧几里德距离近似,该矢量是快速计算的,并且群集算法友好。理论上和实验中分析了所提出的方法。结果表明,所提出的嵌入是有效且健壮的。
translated by 谷歌翻译
虽然现实世界的增强学习应用程序(RL)越来越流行,但安全性和RL系统的鲁棒性需要更多的关注。最近的一项工作表明,在多代理RL环境中,可以将后门触发动作注入受害者(又称Trojan特工),这可能会在看到后门触发动作后立即导致灾难性故障。我们提出了RL后门检测的问题,旨在解决此安全漏洞。我们从广泛的经验研究中得出的一个有趣的观察是一种触发平滑性属性,与后门触发动作相似,正常动作也可以触发特洛伊木马的性能低。受到这一观察的启发,我们提出了一种加强学习解决方案Trojanseeker为特洛伊木马的代理找到近似触发作用,并进一步提出了一种有效的方法,以根据机器的学习来减轻特洛伊木马。实验表明,我们的方法可以正确区分和减轻各种类型的代理和环境中的所有特洛伊木马代理。
translated by 谷歌翻译
被证明深度神经网络(DNN)被证明是易受后门攻击的影响。后门通常通过将后门触发注入训练示例中的目标DNN嵌入到目标DNN中,这可能导致目标DNN消除附加的输入附加的输入。现有的后门检测方法通常需要访问原始中毒训练数据,目标DNN的参数,或对每个给定输入的预测置信度,这在许多实际应用中是不切实际的,例如,在设备上部署的DNN。我们地址DNN是完全黑盒的黑匣子硬标签检测问题,只能访问其最终输出标签。我们从优化角度方面接近这个问题,并表明回程检测的目标受到对抗目标的界定。进一步的理论和实证研究表明,这种对抗性物镜导致具有高度偏斜分布的溶液;在后门感染的例子的对抗性地图中经常观察到奇点,我们称之为对抗性奇点现象。基于该观察,我们提出了对抗极值分析(AEVA)来检测黑匣子神经网络中的后门。 AEVA基于来自Monte-Carlo梯度估计计算的对抗地图的极值分析。在多个流行的任务和后门攻击中通过广泛的实验证明,我们的方法有效地检测了黑匣子硬标的场景下的后门攻击。
translated by 谷歌翻译
我们介绍了Koopman状态估计器(Koopse),一个无模型批量估计的框架,无需线性化假设,不需要特定于问题的特征选择,并且具有与数字无关的推理计算成本训练点。我们将原始非线性系统抬为高维再现内核希尔伯特空间(RKHS),其中系统变为双线性。可以通过在训练轨迹上求解最小二乘问题来学习时间不变的模型矩阵。在测试时间时,系统是代数操纵成线性时变系统,其中标准批量线性状态估计技术可用于有效地计算状态装置和协方差。随机傅里叶功能(RFF)用于结合基于Koopman的方法的计算效率和内核嵌入方法的一般性。 Koopse在实验上经过实验验证,涉及配备有超宽带接收器和轮内径术的移动机器人。 Koopse估计比标准模型的扩展Rauch-tung-Striebel(RTS)更加准确,并且尽管Koopse没有先验知识的系统的运动或测量模型。
translated by 谷歌翻译
通过增强模型,输入示例,培训集和优化目标,已经提出了各种方法进行分发(OOD)检测。偏离现有工作,我们有一个简单的假设,即标准的离心模型可能已经包含有关训练集分布的足够信息,这可以利用可靠的ood检测。我们对验证这一假设的实证研究,该假设测量了模型激活的模型和分布(ID)迷你批次,发现OOD Mini-Batches的激活手段一直偏离培训数据的培训数据。此外,培训数据的激活装置可以从批量归一化层作为“自由午餐”中有效地计算或从批量归一化层次上检索。基于该观察,我们提出了一种名为神经平均差异(NMD)的新型度量,其比较了输入示例和训练数据的神经手段。利用NMD的简单性,我们提出了一种有效的OOD探测器,通过标准转发通道来计算神经手段,然后是轻量级分类器。广泛的实验表明,在检测精度和计算成本方面,NMD跨越多个数据集和模型架构的最先进的操作。
translated by 谷歌翻译